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Abstract-The International System of Units (SI) is not only based on the definitions of seven base units. 
but also on a set of relations between physical quantities. Principles of quantity calculus are discussed. 
It is shown that the relation between two arbitrary quantities X and Y must be of the form 

Y=kXC 

with constant k and c. An exception must be made for dimensionless quantities. Examples are given. 
Now that the SI has been generally adopted. the time seems ripe for agreement on the use of quantity 

symbols in heat and mass transfer. Some thoughts on this subject are presented. 

NOMENCLATURE 

parameter or constant [I]; 
acceleration [m.s-‘I; 
surface area [m’] ; 
parameter [W .rne2. K-l]; 
parameter or constant [l]; 
breadth [ml: 
parameter [W.m-2.K-‘]; 
constant [l] ; 
diameter [m] ; 
kinetic energy [J] ; 
force [N]: 
constant [I]; 
constant; 
length [ml; 
heat of vaporization [J. kg-‘]; 
mass [kg]; 
exponent [I] ; 
molar mass [kg’mol-‘1: 
amount of substance [mol] ; 
Nusselt number [l]; 
pressure [Pa]; 
exponent [l] ; 
arbitrary quantity; 
Prandtl number [l] ; 
exponent [I] ; 
arbitrary quantity; 
gas constant [J.mol-‘.K-‘1; 
Reynolds number [ 11; 
path length [m]; 
sensitivity of hot wire [J.m-3.K-‘]; 
time [s]; 
temperature [K] ; 
wind velocity [m.s-‘I; 
velocity [m s-l]; 
volume [m3]; 
work [J]; 
arbitrary quantity; 
arbitrary quantity. 

Greek symbols 

heat-transfer coefficient [W .rn-‘. K-l]; 
multiplication factor [ 1] ; 
thermal conductivity [W’m-’ .K-‘1: 
kinematic viscosity [m’ .s-‘I. 

1. INTRODUCTION 

THOSE who have known Allan Ede will not be surprised 
to learn that he was a staunch promoter of unity in 
units and therefore of the application of the lnter- 
national System (Sl). In a clear and concise Editorial 
Announcement, published in 1966 [l] he introduced 
the system to readers of this Journal. In his introduc- 
tion he wrote that the Sl “appears to have every 
prospect of being adopted throughout the world, and 
of eventually superseding all others, in every branch 
of science. engineering and commerce”. The develop- 
ments of the past ten years have fully confirmed the 
validity of his statement. He also showed foresight in 
predicting the introduction of the -symbol K for the 
unit of temperature difference and of the Pascal 
(symbol Pa) as the name for the Sl-unit of pressure. 

Because the SI has been adopted by all prominent 
international standardization organizations and Sl- 
units have been or are about to be given legal force 
in many countries. I shall not dwell on the merits of 
the system. Allan Ede’s introduction [l] can still be 
recommended to readers who are not or only super- 
ficially familiar with the Sl. More comprehensive 
information is given by the International Organization 
for Standardization (ISO) in its publication 31 [2]. 

In this paper I shall concentrate on quantities and 
their symbols. rather than on units. It is probably not 
generally known that the Sl rests not only on the 
definition of seven base units, but also on a comprehen- 
sive system of relations between quantities. In the field 
of electromagnetism, for instance. the SI is based on 
the so-called rationalized system of equations with 
four base quantities [2. Part V]. In Section 2 of this 
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paper some principles of quantity calculus are dealt 
with and a number of examples. taken from or related 
to the field of heat and mass transfer, are discussed. 

Now that agreement on units has been reached the 
time seems ripe for a drive towards a greater unity in 
the use of quantity symbols for heat and mass transfer. 
This is a matter of little scientific but of considerable 
practical interest. The lengthy nomenclature lists pre- 
ceding many papers may serve to illustrate this point. 
International bodies in our field. in particular the 
International Centre for Heat and Mass Transfer and 
the Assembly for International Heat Transfer Confer- 
ences, but also the Editorial Board of this Journal can 
play an important role in promoting unity and con- 
sistency in the use of symbols for quantities. Some 
thoughts on the subject are presented in Section 3 of 
the present paper. 

2. QUANTITY CALCULUS 

2.1. General principles 
A quantity is a physical concept that lends itself to 

measurement. This means that the ratio of the mag- 
nitudes of quantities of the same kind can be deter- 
mined. Choosing a certain specimen as the unit the 
magnitudes of other quantities of the same kind can be 
expressed as a number, called the numerical value of 
the quantity. Thus one can write [2. Part 0] for an 
arbitrary quantity X : 

x = {X).[X] (2.1.1) 

where [X] denotes the unit and {x) the numerical 
value. The quantity represents a real or imaginary 
physical entity, e.g. the length of a rectangular room. 
Therefore it does not depend on the choice of the unit. 
When a new unit is introduced that is a times the 
original one, where a is a pure number, the numerical 
value changes to {X)/a. 

Two quantities of the same kind can in principle 
be added or subtracted. When they are expressed in 
the same unit one has: 

or 

x3 =x,*x2 (2.1.2) 

and 

ix,; [X] = ({X1) Ifr ix,:)[Xl 

ix,) = 1x,; & ;x,;. (2.1.3) 

Equation (2.1.2) expresses a relation between quan- 
tities; such relations are called quantity equations. 
Equation (2.1.3) expresses a relation between numerical 
values and is called a numerical value equation. 

Mathematical operatibns on numerical values pre- 
sent no specific problems. On the contrary it should 
be remembered that a mathematical operation performed 
on quantities must always correspond with a physical 
operation, be it sometimes an imaginary one. Two 
simple examples of addition operations are a series 
connection of electrical resistances and a parallel con- 
nection of electrical condensers. However. a simple 
physical addition operator cannot be constructed in all 
cases; the addition of two temperatures being a case 
in point. 

Multiplication and division of quanttties are also 
common operations. A simple example is the multi- 
plication of the length, 1, and the breadth. h. of a 
rectangle to find its surface area. .-l. Hence: 

.4 = Ih (2.1.4) 

or 

j.4: [rl] = il). [/I (h) [b] = I/; lhj [I]” 

from which one can deduce 

i.4) = {r) {b) and [A] = [I]‘. (2.1.5) 

The “physical” operation connected with [I]. [I] is 
the construction of a square with a side of unit length. 
A fairly complicated example of the definition of a 
division operation is the division of a quantity of heat. 
Q. by a temperature. T. which is based on the con- 
cept of a heat engine performing a Carnot cycle. 

Relations between quantities of a different kind must, 
by their nature, have a simple form, as will be shown 
below [3]*. 

Let an (empirical) relation exist between the numeri- 
cal value of a quantity Y and that of a quantity X: 

:Y) = ,fl (x;,. (2.1.6) 

Then the ratio of two values of [ Y} must be indepen- 
dent of the choice of [Xl. Changing the latter by a 
factor 1,/i one has: 

[Y), I’(:x),) fbiX)d -= =---- 
i y:2 f((Xi2) f(i{Xiz, 

(2.1.7) 

which must hold for positive [Yj, (X) and E.. Multi- 
plication by f(j.jX}:) and differentiation (denoted by 
a prime) with respect to i gives: 

n:x; 1) 
- (X2)f"(ib(X2)) = [X)lf’(A(X1;). (2.1.8) 
f( :x;21 

Rearranging and substitution of i = 1 yields: 

rX)Zf’((w2) :x; *f’i{Xi 1) = 

f((X)z) 
= f(Ix),, c (=.% 

where c must be a constant, since {Xj 1 and {Xl, were 
chosen arbitrarily. Dropping the indices one finds after 
integration : 

fix;) = k;X)’ (2.1.10) 

with a positive integration constant k. Defining 

[Y] = [Xl’ (2.1.11) 

one arrives at the quantity equation 

Y = kX’. (2.1.12) 

An important exception to this general form of a 
relation between two quantities must be made for the 
case that X is a dimensionless quantity, because i. can 
then only have the value 1. 

*This development is a slightly modified and extended 
form of one given in lecture notes by Prof. H. Hqjgaard 
Jensen and brought to my attention by the late Dr. W. 
de Groot. 
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The argument can be easily extended to the case because in the SI the unit for both work and kinetic 
where Y depends on several different non-dimension- energy is 1 J = 1 N.m = 1 kg.m’.s-‘. 
less quantities, P, Q.. . . One has: (ii) The ideal gas law reads 

Y= kPPQ4... (2.1.13) 

Leaving open the possibility that k has a physical 
dimension one can write: 

pV = RnT. (2.2.5) 

The SI units for p and V are 1 Pa =I 1 N/m2 and 1 m3 
respectively. making the unit for pV equal to 1 J. 
Further, temperature, T. and amount of substance, n, 
have been chosen as base quantities with units 1 K 
and 1 mol respectively. Therefore the proportionality 
factor R has the unit 1 J. K-’ . mol-* ; its numerical 
value follows from experiment at 8.314.. . An alter- 
native choice could have been to consider temperature 
as a derived quantity with the unit J/mol. In that case 
[R] = 1; the choice {R} = 1 would also be possible, 
leading to a different temperature scale. 

{Yl 
{k}{P}p{Q)4... = 

[klPlp[Qlq~~~ = 9 t2 1 ,+ 
[Yl .. 

or 
{Y} = g{k} {P}p{Q}q... (2.1.15) 

[Y]=g-‘[k][P]P[Q]q.... (2.1.16) 

Here g must be a dimensionless number. It is common 
practice to choose g = 1; the numerical value equation 
(2.1.15)then has thesame form as the quantity equation 
(2.1.13). It is said that the units for Y, k, P, Q, . . . are 
coherent with-respect to this quantity equation. 

When units for the quantities Y, P, Q, . . . are chosen 
independently the unit of k is fixed by (2.1.16) and 
the choice of g. When the unit of Y has not been fixed, 
but the units of P, Q, . . . are known, [k] can be chosen 
to equal 1, thus making k dimensionless. The unit of Y 
is now called a derived unit. This was done in (2.1.11), 
where g = 1 and [k] = 1. Equation (2.1.16) explains 
why derived units are found as products of positive 
and negative powers of base units. 

The value of {k} can be: fixed by definition, the 
common choice being {k} = 1; determined by inte- 
gration on the basis of definitions already made (see 
Section 2.2); determined by experiment (see Section 2.2). 
In the latter case {kj is not known exactly. 

When in a branch of physics n quantities are intro- 
duced between which m relations hold, one has n-m 
independent or base quantities, each with a base unit. 
The base units are fixed by definition. All other units 
are derived ones. The SI is a comprehensive system for 
science and technology with seven base quantities. All 
other quantities are derived ones. following from a well- 
defined set of quantity relations. Their units are co- 
herent with respect to this set, which implies that in all 
relations of the type (2.1.16) one has g = 1. 

2.2. Examples 
(i) Classical mechanics is based on Newton’s law: 

F=ma (2.2.1) 
with 

a = dvldt, v = dsldt. (2.2.2) 

Basic quantities are mass (m), length (s) and time (t), 
F, c and a are derived quantities defined by (2.2.1) and 
(2.2.2). In each case k = 1. Work performed by F is 
defined as 

W = Fs (2.2.3) 
where again W is a derived quantity. 

For the kinetic energy. E, acquired by a mass. m, 
initially at rest, subjected to a constant force, F, one 
finds from the preceding equations: 

s 

t 
E=Fs=m (dv/dt)vdr = fmv’. (2.2.4) 

Here [k} = 3 arises frim integration and [k] = 1 

This example illustrates that the choice of the number 
of base quantities is not a fixed one, but determined 
by convention. 

(iii) Empirical relations are found, of course, as 
relations between numerical values. The good old 
engineering practice of plotting pairs of experimental 
values on a log-log graph and drawing a straight line 
through the points so obtained, fmds its physical justi- 
fication in equation (2.1.12). 

It should not be forgotten that dimensionless quan- 
tities or groups of quantities form an exception to the 
rule. Such quantities usually arise from theoretical 
considerations. Examples are mv2/2kT in kinetic theory 
and hv/kT in the theory of black body radiation. This 
may lead to quantity relations of a type different from 
that expressed by (2.1.12). For example, one finds from 
Clapeyron’s equation for the saturation pressure of 
low density vapours: 

(2.2.6) 

where A4 denotes molar mass and L latent heat of 
vaporization (considered to be wnstant here). In this 
case a plot of p on a logarithmic scale against l/T 
will give a straight line. 

It should be noted that lnp does not make sense, 
since 1nPa is meaningless; on the other hand In {p) 
does. 

(iv) In heat and mass transfer often no closed 
analytical solutions of the basic equations can be ob 
mined. In that case one determines empirical relations 
between dimensionless groups of quantities, such as, 
e.g. Nu, Re and Pr. 

An example of such a relation is the following, 
applied in hot-wire anemometry to express the relation 
between the hot-wire signal and the wind velocity 
perpendicular to the wire : 

Nu=a+bRe”’ (2.2.7) 

where a, b and m are parameters that may depend on 
temperature and Pr. When measuring in air in a limited 
temperature range Pr may be considered as constant. 
From (2.2.7) one finds for the heat-transfer coefficient 

OL- U” (2.2.8) 
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whered is the wire diameter. i the thermal conductivity 
of the gas and U the wind velocity. 

The relation between Y and CT can be found from 
calibration measurements and expressed as 

x = A + B(C’ r:)” (2.29) 

where L’, is an arbitrary reference velocity. From 
experiments in our laboratory Koppius [4] found in 
the temperature range 283 K < T < 353 K that a best 
fit could be obtained when A, B and m were all taken 

to be temperature dependent. 
Such a best fit is needed for accurate measurements 

of turbulent fluctuations of Cl. A measure of the senst- 
tivity, S, of the hot-wire system to such fluctuations is: 

(2.2. IO) 

The temperature coefficient of S then becomes: 

I ss 1 dB 1 dm dm L’ 
--=-- 
SST 

i--+-in---. 
B dt m dT dT C; 

(2.211) 

Apparently this quantity depends on the choice of C:. 
which may be considered as the unit in which Cl is 

expressed.* 
The difficulty arises from the fact that m is not a 

constant, which is at variance with (21.12). It is resolved 
by starting from (2.2.8), which leads to: 

1 is 1 dh 1 di m dv 1 dm - dm Ud 
--_3_- 
SdT 

+-__-_+-_+_ln- 
hdT idT v dT mdT dT v 

(2.2.12) 

Although this result is not surprising, the example 
illustrates that care should be taken in performing 
mathematical operations on quantity relations that 
have been derived from experiment. 

3. SYMBOLS FOR QUANTITIES IN 

HEAT AND .MASS TRANSFER 

The first problem with symbols for quantities arises 
from the fact that many more kinds of quantities exist 
than there are letter signs in both the Latin and Greek 
alphabets, even if one uses upper and lower case. 
upright, sloping and bold face types. Secondly, strong 
but often uncoordinated traditions have developed, in 
symbol usage. Such usage may be different for different 
branches of physics and engineering. Often it arises 
from the cultural interaction between groups and 
nations. Language plays an important part in cultural 

exchange. 
The first problem could be mitigated or even solved 

by the use of less common alphabets and letter types. 
However. this would make the printing of scientific 
papers evenmore expensive and the typewriting of such 
texts almost impossible. The second problem is under 
attack by the international organizations for standard- 
ization. The present situation is exemplified by the IS0 
recommendations [2], where often two or more alter- 
native symbols are given for the same quantity. whereas 
one letter can represent a host of different quantities. 

*Without the introduction of V, the last term m 12.2.1 I) 
would have contained In L’, which is meaningless. 

This seems inevitable if one wants to cover the whole 
field of science and technology with the use of the Latin 
and Greek alphabets only. 

Since heat and mass transfer is on the one hand a 
strongly interdisciplinary held and on the other hand 
often a highly specialized one, the use of symbols is 
strongly connected with that in other fields and highly 
diversified as well. However. I feel that one can and 
should start to agree on symbols for the quantities 
that are most frequently encountered. The ISO-recom- 
mendations [2], in particular parts I-VI. VIII and XII. 
can form a starting point for reaching such an 
agreement. 

In our held different sets of symbols are traditionally 
used by the English speaking workers on the one hand 
and the continental European ones on the other hand. 

In the ISO-recommendations these are usually given 
as equivalent alternatives. 

In 1975 the International Centre for Heat and Mass 
Transfer organized an open forum discussion on the 

use of symbols, with the aim of agreeing on a single 
set to be used in a Heat Exchanger Design and Data 

Book. which is under preparation by a committee of 

experts, chaired by Prof. E. U. Schltinder. Views were 
expressed in favour of each of the two traditional 
systems. Nonetheless. it appeared that between those 
present agreement could be reached to a large extent 
on a single set of symbols. Among these are 1 for the 
heat-transfer coefficient and p for the mass-transfer 
coefficient. Unfortunately the IS0 has dropped in the 
draft of 31 Part IV [2] the symbol r for the heat- 
transfer coefficient. which did occur in the previous 
version, R 31 Part IV. Also in 31 Part XII the symbol 
k is used for the mass-transfer coefficient. 

This shows that the matter of proper symbols for 
heat and mass transfer is far from resolved. I feel that 
the heat and mass transfer community should take an 
active interest in the matter of standardization in its 
own field, just as was done by Allan Ede, to whose 
memory this paper is dedicated. 
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GRANDEURS. UNITES ET SYMBOLES DANS LE TRANSFERI- 
DE CNALEUR ET DE MASSE 

Resume-Le systtme d’UnitCs International (S.I.) ne repose pas uniquement sur la definition de sept 
unites de base, mais aussi sur un ensemble de relations entre grandeurs physiques. Les principes du calcul 
des grandeurs sont discutes. On montre que la relation entre deux grandeurs arbitraires X et I; doit 
Etre de la forme 

k et c&ant des constantes. Une exception doit itre faite pour les quantitts adimensionnelles. Des exemples 
sont don&s. 

Maintenant que le systeme international a CtC geniralement adopt& le moment semble opportun pour 
qu’un accord intervienne sur l’emploi des symboles relatifs aux grandeurs utilisees dans le transfert de 

chaleur et de masse. Queiques reflexions sur ce sujet sont prisenties. 

GRt%SEN, EINHEITEN UND SYMBOLE IN DER WARME- UND STOFFUBERTRAGUNG 

Zusammenfaaaung-Das internationale Einheitensystem (SI) basiert nicht allein auf den Definitionen der 
sieben Grundeinheiten, sondem such auf einem Satz von Beziehungen zwischen physikalischen Grogen. 
Die Grundlagen der GroDenberechnung werden diskutiert. Es wird gezeigt. da13 die Beziehung zwischen 
zwei willkiirlichen Grogen X und 1’ der Form 

Y=kX’ 

gent&en mu& wobei k und c Konstanten sind. Eine Ausnahme bilden dabei dimensionslose Kenntahlen. 
Beispiele werden gegeben. 

Nachdem nun das S&System allgemein akzeptiert ist, scheint die Zeit reif zu sein. eine ~~reinstimmung 
im Gebrauch von Gr~~ns~mbolen in der W&me- und Stoffd~rtragung her~izuf~hren. Einige 

Gedanken hieriiber werden dargelegt. 

BEJIMrlMHbI, EflMHMHbI H OE03HAYEHMfi, HCTIOJIb3YEMbIE 
B TEITJIO- M MACCOOBMEHE 

Anuorpuwn - MeiKAyHapoAHan CHCTeMa emwm(C~)oceoBaaaa He TOJI~KO Ha onpeneneHH#x ceMfi 

OCHOBHbIX eAHHHu,HO Tame fia 3aI3HCHMoCTIIX Memy #Si3H’leCKHMH Benwmatm. 06cymnamcr 

~~HH~H~bl~~ClleTaBeAHYHH.~O~a38HO,YTO3aBHCHMOCTb Mew AByMR IIpOH3BOAbHbIMH B~JIHYW- 

HBNH Xl.4 Y AOJlXJGt HMeTb BHA: 

Y= kX’, 

reek HC noc~o~~1.~c~nlosewsconaanrmT6e3pa3Mep~~e -HbL nfZ%BOASTCR l?p%MepbI. 

B HUXOIIIL&e B~~X,KOrA~CH~Ma CM B ~~eMUpH3H~,~C~~O BWMSI rIepefMOTpa O60- 

3HareiwB i3emf9~~ H B Tenno- H MacCoo6MeHe. ~~HBOASTCR HeKoropble czoo6panremir no ~TOMY 

Bonpocy. 


